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Abstract

A simulation approach is described for testing the performance of uncertainty
calculations based on the Guide to the expression of uncertainty in measurement
(GUM). Performance is measured in terms of the long-run success rate of an un-
certainty calculation when applied to many simulated independent measurements.
An individual calculation is deemed successful if the uncertainty interval obtained
covers the measurand used in the simulation. Several examples, including two
from the GUM, illustrate the approach. Software implementing the method is de-
scribed in detail. Simulation is a practical method that can provide useful insights
into specific measurement problems when there is any doubt about the validity of
GUM calculations.

Keywords: measurement uncertainty, validation, level of confidence, coverage probabil-
ity

1 Introduction

The Guide to the Expression of Uncertainty in Measurement (GUM) is widely used by
metrology organizations and is referred to in many national and international standards
when an evaluation of measurement uncertainty is required [1]. Methods of evaluating
uncertainty described in the GUM have been developed for general use. They work well
when certain conditions are all satisfied, namely: when the response of a measurement
system to small changes in influence quantities is approximately linear; when the distri-
bution of measurement error associated with a result is approximately Gaussian and, if
a calculation of effective degrees-of-freedom (the effective sample size) is required, when
all influence quantity estimates are independent.

These conditions are very often satisfied in practice. However, doubts about the validity
of GUM calculations have been raised from time to time in relation to particular types
of measurement. Sometimes, a different method of uncertainty calculation is found
to give results that disagree with the GUM. In such cases, it is usually very difficult
to determine the correct method of uncertainty calculation analytically. So a general
approach to testing GUM calculations would be very useful.

This article describes a straightforward simulation approach that can test whether the
GUM can be applied to a particular type of measurement under specific conditions. A
computer simulation of the measurement procedure is developed, which includes data-
processing and a model of measurement errors. Then, using reasonable choices for the
measurand, influence quantities and error distributions, a large number of independent
data-sets are generated and an uncertainty interval is calculated for each. The perfor-
mance of the uncertainty calculation method is evaluated by assessing the proportion
of intervals that contain the measurand and comparing this with the nominal coverage
(the ‘level of confidence’). If the observed coverage found under simulated conditions
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is near nominal (e.g., 95%) then a GUM uncertainty calculation can be applied with
confidence to an actual measurement of the same type.

A simulation model for testing uncertainty calculations can be developed from informa-
tion about a measurement procedure and the data provided in an uncertainty budget
for the measurement. Such a model is not intended to reproduce the finer details of
an actual experimental set-up. However, in as much as the uncertainty budget is a
description of the main sources of measurement error and the measurement equation
describes how such errors influence results, the model will be an adequate generator of
data for testing uncertainty calculations.

This article describes the simulation approach in detail and outlines supporting software.
In section 2, the approach is explained using a simple measurement scenario. Then, in
section 3, it is applied to two examples from Appendix H of the GUM. The first of
these is a detailed analysis of a gauge-block measurement. The GUM notes that several
second-order terms make significant contributions to the uncertainty budget, but it is
difficult to predict what effect these terms will have on the coverage of the uncertainty
calculation and indeed whether the modified procedure described in the GUM is needed
to achieve the desired level of confidence. The simulation method is used to assess the
importance of these second-order terms.

In the second example, the impedance of an electric circuit component is measured.
Estimates of the real and imaginary components of impedance are obtained from a
common set of data and are therefore correlated. A small number of observations are
made, so the effective sample size is also important in the uncertainty analysis of this
problem. Now, the GUM method of calculating the effective degrees-of-freedom for
the result (the Welch-Satterthwaite (WS) formula [1, G.2]) cannot be applied when
estimates are correlated, so the GUM gives no guidance on how to obtain expanded
uncertainty intervals in this case. We use simulation to select the best of several ad hoc
calculations that might be used to complete the analysis.

2 Simulation method

A simple measurement scenario is used here to illustrate the simulation method. A
quantity Y is defined in terms of two observable influence quantities

Y = X1 + X2 .

While X1, X2 and Y are assumed fixed but unknown, measurements of X1 and X2 are
subject to Gaussian noise, leading to uncertainty in the estimate of Y .

To measure Xi (X1 or X2), a small number ni of observations are collected. The sample
mean xi and the sample variance s2

i are calculated. In the terminology of the GUM, xi is
called the estimate of Xi and ui = si/

√
ni is the associated standard uncertainty. GUM

uncertainty calculations require three numbers to characterise each input quantity: xi,
ui and νi, where νi = ni − 1.

2.1 Simulating the measurements

A sequence of independent values of xi, ui and νi must be generated to simulate mea-
surements of Xi that can be used in GUM calculations. While νi is constant in this
work, we require random number generators for xi and ui. Modeling observations by a
Gaussian distribution with mean Xi and variance ni σ

2
i , we consider the estimates xi to



be drawn from a Gaussian distribution with mean Xi and variance σ2
i . Consequently,

we consider ui to be the realisation of

σi

√
χ2

νi

νi
,

where χ2
νi

is a chi-square random variable with νi degrees of freedom.

A function sim.gaussian (see Appendix 5.1), written in the R programming lan-
guage [2], generates three N -element vectors containing simulated estimates, standard
uncertainties and degrees-of-freedom.1 With this function, a simulation of N measure-
ments of X1 and X2 can be written as

sim.x1 <- sim.gaussian(N,X1,sigma1,df1)

sim.x2 <- sim.gaussian(N,X2,sigma2,df2)

where the the results of N simulated measurements have been assigned to program
variables sim.x1 and sim.x2. Each variable refers to a list data structure in memory
containing the N -element vectors for x, u and ν. List elements are accessed in R by
appending a dollar sign and the elements name (i.e., $x, $u or $df) to the variable. For
example, to obtain a vector of N simulated estimates of Y = X1 + X2 we could write

sim.y <- sim.x1$x + sim.x2$x

2.2 Calculation of uncertainty and coverage

A software package has been used to simplify the expression of GUM calculations and
optimise computations [3]. The package implements the notion of an uncertain number ,
which automates the propagation of uncertainty through an arbitrary number of data
processing steps [4]. In this case, the data processing for a measurement of Y , given
simulated measurements of X1 and X2 is2

#--------------------------------------

x1 <- elementary(

’x1’,

sim.x1$x,

sim.x1$u,

sim.x1$df

)

x2 <- elementary(

’x2’,

sim.x2$x,

sim.x2$u,

sim.x2$df

)

y <- intermediate(

’y’,

~ x1 + x2,

list(x1,x2)

)

Here, the program variables x1 and x2 refer to N -element vectors of uncertain numbers,
representing N the independent estimates x1 and x2, which are inputs to the GUM
calculation. The variable y is an N -element vector of uncertain numbers, representing
the N evaluations of x1 + x2. The calculation of N estimates of Y and the propagation
of uncertainty information is done implicity during the call to intermediate().

1Although the N values of νi are the same, the software performing the GUM uncertainty calculation
requires a value of νi for each of the N simulated experiments.

2The term elementary describes an uncertain number defined by three numbers: an estimate, an
uncertainty and a degrees-of-freedom. The term intermediate describes an uncertain number defined as
a function of other uncertain numbers [4].



To assess coverage, we test whether the uncertainty interval generated for each experi-
ment covers the measurand. This can be calculated in the following way

Y <- X1 + X2

cover <- 100 * sum(

sim.successes(

Y,

value(y),

uncertainty(y),

dof(y)

)

) / N

The functions value(y), uncertainty(y) and dof(y) return N -element vectors con-
taining the estimates of Y , the associated standard uncertainties and degrees-of-freedom,
respectively. The function sim.successes() tests whether the measurand (Y <- X1 +
X2) is contained in the 95% coverage interval evaluated for each measurement. It returns
an N -element vector of Boolean values (see Appendix 5.1). Applying the R function
sum() to this vector returns the number of successful intervals. So, finally, the percent-
age of successful intervals is assigned to cover.

2.3 Application

We now look at the performance of GUM calculations in the context of a measurement
of Y when estimates of X1 or X2 are based on very small samples.

The measurement equation is linear, so the values used for X1 and X2 in the simulation
can be set to zero without loss of generality, which assigns the measurand to zero. The
following simulation parameters are also fixed: σ1 = 2, σ2 = 1 and ν1 = 3. Then,
N = 105 simulations are performed for each of ν2 = 1, 2, 3, 5, 10, 20,∞. The observed
coverage values are shown in Table 1 as a function of ν2. The results in Table 1 show
departures from 95% coverage that are small and unlikely to be of practical concern.

ν2 1 2 3 5 10 20 ∞
coverage (%) 96.4 95.6 95.2 94.7 94.2 93.9 93.6

Table 1: The observed coverage of the uncertainty calculation for an estimate of Y =
X1 + X2 when ν1 = 3 and σ1 = 2, σ2 = 1. The standard uncertainty in the observed
coverage is approximately 0.07%

Observed coverage values, like those reported in Table 1, vary because a finite number
of simulations is performed. Testing each uncertainty interval can be considered a
Bernoulli trial, so the observed coverage, which is the result of N trials, has a binomial
distribution. If the probability of success is p, and there are N independent trials, the
standard deviation of the observed coverage will be

√
Np(1− p). So, for p = 0.95 and

N = 105, the standard deviation in the observed coverage will be 69, or 0.07%.

3 GUM examples

This section looks at two examples from Appendix H of the GUM and uses simulation
to check the performance of different methods of uncertainty calculation. The GUM
provides an uncertainty budget and a measurement equation in each case, from which
a suitable simulation model can be inferred. Our aim is to simulate sets of data that
can be regarded as representative of the type and conditions of measurement under
consideration.



The information provided in the GUM identifies the physical quantities that contribute
to a measurement result. These are imprecisely known, leading to an error in the
final measurement result. The uncertainty budget provides estimates of each influence
quantity and associates each with a distribution that is considered to represent what is
known about the likely errors. We use this information to develop a simulation model.

The first example illustrates how the simulation method can be applied to real mea-
surements by considering a gauge block calibration. There are nine influence quantities,
three different types of distribution are associated with measurement errors and the
measurement equation is slightly non-linear. The problem is sufficiently complicated to
preclude any simple intuition about how coverage may be affected by departures from
the assumptions on which the GUM method is based.

The second example is a simplified measurement scenario that is used in the GUM to
discuss different approaches to data processing. In one of these approaches, the GUM
cannot offer guidance on how to obtain an expanded uncertainty interval from the
results. We consider this scenario as an example where several alternative uncertainty
calculations could be envisaged as ways of finishing the calculation. Simulation provides
a tool to assess which method can be expected to perform best.

3.1 Gauge block measurement

Example H.1 of the GUM describes a gauge block measurement. Analysis in the GUM
identifies several second-order terms that are significant when compared with other
terms in the uncertainty budget. When these terms are included in the calculations,
the standard uncertainty of the result increases from 32 nm to 34 nm. In order to better
understand how coverage is affected, we have tested the GUM uncertainty calculation
with and without the extra terms using simulated data.

Section 3.1.1 reviews the information provided in the GUM. As much as possible, the
GUM’s notation is followed, however, it is necessary to make some small changes to
clarify aspects of the simulation model that will be developed. Sections 3.1.2 and 3.1.3
describe the simulation model and data processing and section 3.1.4 presents the results
obtained.

3.1.1 Description

In H.1 the measurand l is the length at 20 ◦C of an end gauge being calibrated (see [5] for
more about this type of measurement and its uncertainty analysis). The measurement
equation is given as

l = ls + d− ls(δαθ + αsδθ) , (1)

where the terms are described as follows.

• ls is the length of the standard.

• d is the length difference between the standard and the gauge being calibrated.

• δα is the difference between the coefficients of thermal expansion for the standard
and the gauge being calibrated.

• θ is the temperature deviation, from 20 ◦C, of the gauge being calibrated.

• αs is the coefficient of thermal expansion of the standard.

• δθ is the difference in temperature between the two gauges.



Two of these terms are decomposed further

d = d̄ + d1 + d2 , (2)

where

• d̄ is the arithmetic mean of a number of length difference observations

• d1 is associated with random comparator errors

• d2 is associated with systematic comparator errors

and
θ = θ̄ + ∆ (3)

where

• θ̄ is the mean difference of the test-bed temperature from 20 ◦C

• ∆ is associated with a cyclical error in the test-bed temperature.

A summary of the information provided in the GUM is shown in Table 2.

term distribution value uncertainty degrees of
type parameter freedom

ls Gaussian 50 000 623 nm 25 nm 18
d̄ Gaussian 215 nm 5.8 nm 24
d1 Gaussian 0.0 nm 3.9 nm 5
d2 Gaussian 0.0 nm 6.7 nm 8
θ̄ Gaussian −0.1 ◦C 0.2 ◦C ∞
∆ arcsine 0.0 ◦C 0.5 ◦C ∞
αs uniform 11.5× 10−6 ◦C−1 2× 10−6 ◦C−1 ∞
δα uniform 0.0 ◦C−1 1× 10−6 ◦C−1 50
δθ uniform 0.0 ◦C 0.05 ◦C 2

Table 2: A summary of the information provided in the GUM for the end-gauge mea-
surement. The uncertainty parameter depends on the type of distribution. For Gaussian
distributions the parameter is the standard deviation, for uniform and arcsine distribu-
tions it is the half-width.

Now equations (2) and (3) pose some difficulties for a simulation study. They contain
both terms representing physical quantities and terms representing estimates of physical
quantities. Measurement equations should define the relationship between the quantities
involved in a measurement, so we need to re-interpret (2) and (3) in this light. This
could be done by adopting a notation to distinguish between quantities and estimates.
However, the GUM expressly tries to avoid special notation, relying on context to help
the reader decide whether a quantity or estimate is being referred to. We will endeavour
to follow that policy. Nevertheless, it is important to be very clear about the distinction
when developing a simulation model of the physical measurement system.

In equation (2), d, d1 and d2 are physical quantities (a length difference and two errors),
however d is a numerical estimate (the mean of a series of comparator indications). If
we re-interpret d as the quantity associated with operation of the comparator, we can
obtain a quantity equation by writing

d = d + d0 + d1 + d2 , (4)

where



• d, d1 and d2 are as defined above,

• d0 is associated with a repeatability error,

We assume that d0 ≈ 0 and re-interpret u(d̄), from the GUM, as the standard uncer-
tainty u(d0). The quantity d is associated with the actual comparison measurement,
which is designed to measure d but has some influences of its own. This interpretation
seems compatible with the description in the GUM.

A similar issue arises in equation (3), where θ and ∆ are quantities and θ̄ is described
as an estimate. In this case, we simply choose to reinterpret θ̄ as a physical quantity
(representing an actual mean temperature, rather than an estimate) in the defining
equation (3). The same symbol will represent an estimate of that quantity, with an
associated uncertainty u(θ̄), when the context requires it.

Equations (1), (2) and (3) are used for data processing and the evaluation of uncertainty
in the GUM. In that context, all terms refer to quantity estimates. In particular, the
measurand estimate is

l = ls + d

and the associated standard uncertainty can now be written as3

u(l) =
√

u2(ls) + u2(d0) + u2(d1) + u2(d2) + l2s θ
2u2(δα) + l2sα

2
su

2(δθ) ,

which takes into account the term d0 introduced above.

3.1.2 Simulation

To develop a simulation model, we must consider the actual measurement, which is a
comparison of two gauge blocks. This is expressed in equation H.1 of the GUM

d = l(1 + αθ)− ls(1 + αsθs) ,

where α is the coefficient of thermal expansion of the gauge block being calibrated, θs

is the temperature deviation from 20 ◦C of the standard gauge block and other terms
have already been defined. The relationship of α and θs to other terms is

δθ = θ − θs

δα = α− αs .

Combining this with equations (3) and (4) we obtain, for the measurement of the dif-
ference in length between two gauge blocks,

d = l − ls + l(αs − δα)(θ̄ + ∆) − lsαs(θ̄ + ∆ − δθ) + d0 + d1 + d2 . (5)

This is central to our simulation model, which must generate the estimates of d. An
algorithm based on the quantity equation (5) keeps the values of l, ls, αs and θ̄ con-
stant and randomly generates values of d0, d1, d2, ∆, δθ and δα for calculating d. The
distinction between the two sets of quantities recognizes that d0, d1, d2, ∆, δθ and δα

are essentially residual errors. On every occasion the best estimate of these quantities
is zero, so it is necessary to simulate their underlying variability when generating values
of d. On the other hand, the quantities ls, αs and θ̄ are presumably measured. We take
the view that these quantities are fixed physical quantities (including l, the measurand)

3This equation is the equivalent of (H.5) in [1, H.1.3] when our slight change of notation is taken into
account. It is obtained using the standard GUM method for propagation of uncertainty and assuming
that the different components of uncertainty are independent.



during the simulations that generate values of d. Estimates of ls, αs and θ̄, represent-
ing measurements of these quantities, are generated independently for use in the data
processing and uncertainty analysis.

Table 3 summarizes how each term in (5) is handled when generating values of d and
gives the distribution parameters for those quantities. Table 4 summarizes the parame-
ters used when generating independent estimates of ls, αs and θ̄. The type of distribution
from which values are drawn in each case is taken from Table 2, as are the distribution
parameters for the mean, standard deviation and degrees of freedom. In so doing, we
expect the simulations will fairly represent the (unknown) conditions under which the
data reported in the GUM were obtained.

Table 3: Summary of parameters used to simulate d using equation (5). For random
quantites, the types of distribution and parameters for the associated random number
generator are given.

quantity random distribution value uncertainty dof
ls N - 50 000 623 nm - -
d0 Y Gaussian 0 5.8 nm 24
d1 Y Gaussian 0 3.9 nm 5
d2 Y Gaussian 0 6.7 nm 8
θ̄ N - -0.1 ◦C - -
δθ Y uniform 0 ◦C 0.05 ◦C 2
∆ Y arcsine 0 ◦C−1 0.5 ◦C−1 ∞
αs N - 11.5× 10−6 ◦C−1 - -
δα Y uniform 0 10−6 ◦C−1 ∞

Table 4: Summary of parameters used to simulate estimates of ls, αs and θ̄. The
distribution types and parameters for the associated random number generator are
given.

quantity distribution value uncertainty dof
ls Gaussian 50 000 623 nm 25 nm 18
θ̄ Gaussian -0.1 ◦C 0.2 ◦C ∞
αs uniform 11.5× 10−6 ◦C−1 2× 10−6 ◦C−1 ∞

3.1.3 Data processing

Each simulated experiment yields estimates for d, ls, αs and θ. In addition, there
are five quantities in the measurement problem with finite degrees of freedom, so the
standard uncertainties u(ls), u(d0), u(d1), u(d2) and u(δα) are also generated randomly.
As already mentioned, the estimates of d0, d1, d2, ∆, δθ and δα are always zero. The
standard uncertainties u(θ), u(∆) and u(αs), which have infinite degrees of freedom, are
taken directly from Table 2. This data, together with the number of degrees of freedom
reported in Table 2, can be used to obtain an estimate of l and apply the GUM method
to evaluate u(l).

The two second-order terms identified in the GUM as making significant contributions to
the uncertainty are lsu(δα)u(θ) and lsu(αs)u(δθ), where u(θ) is the combined standard
uncertainty of θ + ∆. These terms can be included in an extended GUM uncertainty
calculation by following an approach used in an earlier study [6]. We treat the terms as
independent influences and assign to each a number of degrees-of-freedom equal to the
lesser of the degrees-of-freedom in their factors (νδα and νδθ, respectively).



A listing of the R code used to simulate data, apply the GUM data processing and
measure the performance of the two methods of uncertainty calculation is given in
Appendix 6 with some additional comments.

3.1.4 Results

The results of testing are shown in Table 5. Coverage is found to be just less than nomi-
nal in the standard GUM calculation and slightly greater than nominal in the calculation
with extra terms. The mean of the standard uncertainties generated during testing was
31.8 nm, increasing to 34.0 nm when the additional terms were included, which agrees
with the GUM values (32 nm and 34 nm, respectively). The standard deviations of the
standard uncertainties were 5 nm in both cases, indicating that a reasonable range of
inputs to the uncertainty calculation was generated by the simulations.

method coverage (%)
standard 94.4

extra terms 95.6

Table 5: Results from N = 105 simulations of the gauge block measurement. The
standard uncertainty in the coverage values is approximately 0.07%.

The performance requirement for this uncertainty calculation is 95% coverage proba-
bility. The simulation results show a very slight difference between the two methods:
the GUM calculation with additional terms meets this requirement and the standard
GUM calculation falls short. The difference is very small and of questionable practi-
cal importance. It is interesting to note that the apparently significant difference in
standard uncertainty (about 6%) obtained using the two methods of uncertainty cal-
culation corresponds to a much smaller deviation from nominal coverage (about 0.5%).
In view of the complexity of this measurement (nine influence quantities, three types
of uncertainty distribution and non-linearity in the measurement equation), it is very
difficult to anticipate how much coverage will be affected by departures from the basic
assumptions. Simulation, is an effective method of checking the performance. Further
investigation showed that the coverage of the standard GUM calculation is insensitive to
the type of distribution used to simulate the influence quantities. For example, when ev-
ery influence was modeled by a Gaussian distribution, the coverage of both calculations
remained essentially the same.

3.2 Impedance measurement

Example H.2 of the GUM describes the measurement of several quantities associated
with an electrical circuit component. The measurement design is artificially simple,
but the example is interesting because it illustrates the GUM treatment of multiple
measurands and the handling of uncertainty calculations when estimates are correlated.

Estimates of the resistance, reactance and the magnitude of the impedance are required.
These can be obtained as a function of three other quantities measured in the circuit:
the amplitude V of an AC potential difference across the component terminals, the
amplitude I of the AC current through the component and the phase-shift φ of the
potential difference with respect to the current. Five simultaneous measurements are
made of V , I and φ, which provide a pool of data for the analysis. The three quantities
of interest are related to in-circuit quantities by the following equations: the resistance

R =
V

I
cosφ , (6)



the reactance
X =

V

I
sinφ (7)

and the impedance-magnitude
Z = V/I . (8)

Appendix H.2 compares two ways of processing the measurement data. In the first, the
means V̄ , Ī and φ̄ and the associated standard uncertainties u(V̄ ), u(Ī) and u(φ̄) are
calculated, as are the sample correlation coefficients r(V̄ , Ī), r(V̄ , φ̄) and r(Ī , φ̄). Each
of u(V̄ ), u(Ī) and u(φ̄) has four degrees-of-freedom, being based on five observations.
Table 6 summarises data reported in the GUM. With equations (6), (7) and (8), and
this data, the GUM method of uncertainty propagation can be applied to obtain the
uncertainty of estimates of R, X and Z.

quantity value uncertainty
V̄ 4.9990V 0.0032V
Ī 19.661mA 0.0095mA
φ̄ 1.04446 rad 0.00075 rad

Correlation coefficients
r(V̄ , Ī) = −0.36
r(V̄ , φ̄) = +0.86
r(Ī , φ̄) = −0.65

Table 6: A summary of measurement data from the GUM for the resistance-reactance
measurement.

The second way of processing data uses equations (6), (7) and (8) to calculate three
samples of five values each for R, X and Z directly from measurements of V , I and
φ. The sample means then estimate the corresponding measurands and standard un-
certainties can be calculated from the sample standard deviation in the means, without
any need for uncertainty propagation. We do not consider this method further here,
but note that four degrees of freedom would naturally be associated with each of the
standard uncertainties obtained.

Returning to the first method of data processing, the estimates of V , I and φ are
obtained from a common pool of measurements, so they are correlated. The GUM
method of calculating the effective degrees-of-freedom (the WS formula [1, G.2]) cannot
be applied when estimates are correlated. So the GUM provides no guidance on how to
construct uncertainty intervals for this problem.

In this section, we suppose that a final statement of uncertainty is required and con-
sider three ways in which the analysis might be completed. The first attributes four
degrees of freedom to the standard uncertainties of the results (the same as the degrees
of freedom associated with the input quantity estimates), the second applies the WS
formula (ignoring correlations) and the last method attributes an infinite number of
degrees of freedom to the inputs (so the WS formula is not required – the degrees of
freedom associated with the standard uncertainty in the results is also infinite). These
are simplistic alternatives but they highlight a real issue: sometimes an assessment of
the validity of an ad hoc uncertainty calculation procedure is required.

3.2.1 Simulation

The simulation model must generate estimates of three input quantities that are cor-
related and based on a small effective sample size. The function sim.mvgaussian()



provides a multivariate version of the routine used to simulate estimates of a Gaussian
influence quantity (see §5.1.5). In this case, the parameters for sim.mvgaussian() are
taken from the data in Table 6 and we are once again assuming that the conditions
used in the simulation, for the purposes of evaluating uncertainty calculation coverage,
will be close to those that prevailed during the actual experiment. The estimates of
V , I and φ are returned as the elements of random vectors drawn from a multivariate
Gaussian distribution. The distribution has mean vector

(V , I, φ)

and covariance matrix



u(V )2 u(V )r(V , I)u(I) u(V )r(V , φ)u(φ)
u(I)r(I, V )u(V ) u(I)2 u(I)r(I, φ)u(φ)
u(φ)r(φ, V )u(V ) u(φ)r(φ, I)u(I) u(φ)2


 .

Each estimate is associated with an uncertainty matrix drawn from a Wishart distri-
bution, which arises as the distribution of the sample covariance matrix for a sample
from a multivariate Gaussian distribution [7, §4.4]. The elements of the list returned by
sim.mvgaussian() consist of: N 3-element vectors of estimates, N 3×3 covariance ma-
trices for the uncertainties and an N -element vector of degrees-of-freedom. The source
code for this simulation is shown in Appendix 7.

3.2.2 Results

Coverage results for the three measurands in this problem are shown in Table 7. The
column labelled ν = 4 shows the observed coverage for the method that attributed
four degrees-of-freedom to each output quantity. The column labeled r = 0 shows the
results obtained when correlation is ignored in both the calculation of combined standard
uncertainty and the WS formula.4 The column labeled ν = ∞ shows the observed
coverage when infinite degrees-of-freedom are associated with the measurement results.

quantity coverage (%)
(Ω) ν = 4 r = 0 ν = ∞
R 95.0 100.0 88.0
X 95.0 89.5 87.9
Z 95.0 95.2 87.8

Table 7: Coverage obtained from N = 105 simulations of the impedance measurement.
See text for a description of the different cases. The standard uncertainty in coverage
values is approximately 0.07%.

Without a doubt, the best method, suggested recently by Willink [8], assigns the same
number of degrees-of-freedom to the output quantities as are attributed to the input
quantities. The second method, in which correlation is ignored, generates uncertainty
statements that are conservative for R and optimistic for X. The treatment in H.2
also evaluates the standard uncertainties under the assumption of independent inputs
and obtains a standard uncertainty for R that is larger than the correlated result, a
standard uncertainty for X that is smaller and a standard uncertainty for Z that is
roughly the same. These findings are consistent with our coverage results. Finally, the
third method, which ignores the effective sample size, generates uncertainty statements

4When inputs are correlated, the calculation of combined standard uncertainty should make use of
the estimated correlation coefficients (see [1, §5.2.2]). However, here it is assumed that all correlation
coefficients are zero, so the calculation of combined standard uncertainty is simplified (see [1, §5.1.2]).



that are uniformly too low for all outputs. The uniformity of coverage here suggests
that raising the coverage factor5 would obtain nominal coverage. That, of course, is
what is achieved by the first method.

4 Discussion and Conclusion

A measurement is simply a procedure designed to estimate a quantity of interest. Every
time it is applied, the result obtained differs from the quantity intended to be measured
by some unknown error. A statement of uncertainty is an indication of how ‘good’ a
measurement result is (how close it is likely to be to the measurand). However, with
each new set of measurement data the uncertainty calculated may change. The method
of calculating uncertainty, on the other hand, is fixed by the measurement procedure.
It has a nominal coverage probability that can be interpreted in terms of the expected
long-run success rate for many independent measurement problems.6 So, while it is
impossible to identify whether actual uncertainty intervals cover the measurand in real
measurements, it is possible to assess the long-run rate of successful outcomes averaged
over many independent measurements. This is an objective performance measure of the
measurement procedure.

Numerical simulations can be used to test coverage, provided the simulation model
gives a reasonable representation of the actual measurement system. We argue that a
satisfactory simulation model can be developed from information about a measurement
procedure, together with the data provided in an uncertainty budget, and have given
examples in §3.1 and §3.2. This approach relies on the uncertainty budget being an
adequate description of the main sources of measurement error. It is also important to
clearly identify how other physical quantities may influence the measurement by stating
a complete measurement equation. Both of these requirements are fundamental to the
GUM recommendations on the reporting of measurement uncertainty.

A simulation model is not required to reproduce the finer details of an actual experi-
mental set-up. In as much as the uncertainty budget is an adequate description of the
main sources of measurement error and the measurement equation adequately describes
how errors influence results, the model will be a suitable generator of data for testing
uncertainty calculations. If desired, the parameters of the simulation model can be
varied to explore a wider range of scenarios (this was illustrated in §2.3, but not done
in §3.1 or §3.2). It is also possible to study the sensitivity of an uncertainty calculation
procedure to the types of uncertainty distributions that are associated with influence
quantity estimates. We alluded to this briefly at the end of §3.1.4, when stating that
coverage remained the same when all every influence was modeled by a Gaussian distri-
bution. It is certainly possible to investigate a particular choice of distributions in the
uncertainty budget by testing the coverage of the procedure with simulated data.

Simulation offers the measurement scientist an important tool when there is any doubt
about the validity of a GUM calculation. There is likely to be a number of specific
‘niche’ problems of this type, where it may not be appropriate to follow the general GUM
guidelines exactly. Alternative procedures may offer intelligent, pragmatic, responses to
the situation but there is a need to justify their use. A recent example of this occurred in
the context of microwave measurements, where adaptive uncertainty calculations were
being used to overcome perceived problems with the GUM method [12]. Expertise and
common-sense suggested a ‘better’ course of action when the GUM method was thought

5The product of a coverage factor and the standard uncertainty is called the expanded uncertainty.
It is the half-width of a GUM uncertainty interval [1, §2.3.6].

6More detailed discussion about using long-run success-rate to validate uncertainty calculations is
given in [9, §2], [10, §2.2] and [11].



to be failing and the metrologist would use personal judgement to decide when to use the
alternative procedure. By simulating this type of problem, it was possible to check the
validity of the ad hoc method and optimise performance by using an objective criterion,
rather than human judgement.

Recently [13], a simple radio-frequency measurement scenario was studied by simulation.
The quantity of interest was the magnitude of a complex reflection coefficient that
was approximately zero. The results highlighted differences between GUM uncertainty
calculations and a Monte Carlo method proposed in the the first Supplement to the
GUM (SUP) [14] and stimulated some discussion about the correctness of validating
the SUP method in this way [9, 11, 15–17]. We note, however, that no objections have
been raised regarding simulation as a way of testing of the GUM method. Indeed, at
the time of writing, the most recent contribution to this discussion makes a compelling
argument for its general use [11].

There may be good reasons to suspect that the GUM method is failing, however, when
assessed objectively by simulation, its performance has turned out to be surprisingly
good in difficult situations. It is hard to really identify measurement conditions in which
uncertainty calculations will fail, because the randomness of measurement results leads
to randomness in the associated uncertainty statements that is difficult to assess. It is
necessary to consider the long-run behaviour of the calculation procedure to decide if
there is really a problem. For example, when the lower bound of an uncertainty interval
is negative for a quantity of interest that is strictly positive, failure of the GUM method
is often assumed. Also, when a measurement function is strongly non-linear, such as
the determination of a squared magnitude close to the origin in the complex plane,
the GUM is expected to fail. The studies in [12, 13] deal with such cases and reveal
that, while the GUM method certainly can fail, it performs rather better than might
have been expected. More importantly, the conditions for which it is still safe to use
the GUM can be assessed with some objectivity and a decision can be made about the
whether alternative methods will perform better.

In conclusion, the use of long-run coverage success rate to objectively measure the
performance of uncertainty calculations under simulated measurement conditions is an
effective way of determining whether an uncertainty calculation is fit-for-purpose. The
assessment of coverage of a statistical procedure by simulation is now taught at an
introductory university level [18, p123]. However, it does not seem to be well-known
within the measurement community.7 There are only a few authors that report using the
method to check the validity of methods of uncertainty calculation (see, e.g., [19, 20],
also [21] describes the use of simulation to assess coverage performance in a slightly
different context). The practicality of the approach does, of course, depend on the ease
with which it can be applied to specific problems. That is why this article has described
a recent general-purpose software implementation in some detail. Similar tools could be
developed using a number of other readily available mathematical software packages.
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5 Appendix: Simulation Software

Computations in this work used the R statistical computing language and environment
[2]. The data processing and propagation of uncertainty were carried out using a package
of R functions that is freely available (on-line at http://mst.irl.cri.nz) [3]. The next
section documents some other functions that were used to simulate measurement results
and assess coverage in this study. A useful reference to the R language is [22].

The following aspects of R syntax may be of interest.

• Assignment is indicated by an arrow <- (rather than an equals sign =)

• A function is defined by assigning a generic function to a name. For instance,
sim.standard.u <- function(N,sigma,df){....}

• Names may include a dot, e.g., sim.standard.u (in many programming lan-
guages, dots are operators with special meanings)

• Vectors can be defined by the concatenation function c(), e.g., c(1,2,3) defines
a 3-element vector with components 1, 2 and 3

• A tilde ~ indicates an R formula, which expresses a relationship among variables.
For example, ~x1 + x2 appeared in the definition of the intermediate uncertain
number y in §2.2.

5.1 Simulation functions

5.1.1 Simulating standard uncertainty

The function sim.standard.u, below, returns an N -element vector of random variates
distributed as

σ

√
χ2

ν

ν
,

where χ2
ν is a chi-square random variable with ν degrees of freedom.

sim.standard.u<-function(N,sigma,df)

{

if(!is.infinite(df)) {

u <- sigma*sqrt(

rchisq(N,df)/df

)

} else {

u <- rep(sigma,N)

}

return(u)

}

This function is used to simulate values of standard uncertainty when an influence quan-
tity has finite degrees-of-freedom. It is used in the functions sim.gaussian, sim.uniform
and sim.arcsine described below. These functions all return a list containing: a vector
of N estimates xi, a vector of N standard uncertainties ui and a vector of N degrees-
of-freedom νi (although the degrees-of-freedom is a constant).

5.1.2 Gaussian influences

The function sim.gaussian is used to simulate measurements of an influence quan-
tity with a Gaussian error. The estimates are generated by a normal random number
generator rnorm.



sim.gaussian<-function(N,mu,sigma,df)

{

x <- rnorm(N,mu,sigma)

u <- sim.standard.u(N,sigma,df)

return( list(x=x,u=u,df=df) )

}

5.1.3 Uniform influences

The function sim.uniform is used to simulate measurements of an influence quantity
with a uniformly distributed error. The estimates are obtained from a uniform random
number generator runif.

sim.uniform<-function(N,mu,a,df){

x <- mu + runif(N,-a,a)

u <- sim.standard.u(N,a/sqrt(3),df)

return( list(x=x,u=u,df=df) )

}

We note that the sampling distribution of the standard uncertainty u for a uniform
population is not correctly modeled by sim.standard.u. However, our usage here is
consistent with the way that the GUM treats finite degrees of freedom in non-Gaussian
influence quantities.

5.1.4 Arcsine influences

The function sim.arcsine is used to simulate measurements of an influence quantity
with an arcsine error distribution. The estimates are obtained by an inversion method
[23, p 481]. The comment above in §5.1.3 about simulating the sampling distribution
of the standard uncertainty with sim.standard.u also applies.

sim.arcsine <-function(N,mu,a,df) {

x <- mu + a * sin(

runif(N,-pi/2,pi/2)

)

u <- sim.standard.u(N,a/sqrt(2),df)

return( list(x=x,u=u,df=df) )

}

5.1.5 Multivariate Gaussian influences

The function sim.mvgaussian is used to simulate measurements of a vector of influence
quantities associated with correlated Gaussian errors. The estimates are obtained from
a multivariate normal random number generator rmvnorm and stored in an array of
N M -component vectors (assigned to x, in the list returned). The associated variance-
covariance matrices are generated by a Wishart random number generator rwish, which
returns an array of N M ×M matrices (assigned to xcv, in the list returned) [7, §4.4].

sim.mvgaussian<-function(N,mu,cv,df)

{

M <- length(mu)

if(is.infinite(df)) {

x <- t(

sample <- rmvnorm(N,mu,cv)

)

xcv <- array(cv,dim=c(M,M,N))

} else {

x <- t( rmvnorm(N,mu,cv) )

xcv <- array(dim=c(M,M,N))

for(i in 1:N)

xcv[,,i]<-rwish(df,cv) / df



}

return( list(x=x,cv=xcv,df=df) )

}

5.1.6 Assessing coverage

The function sim.successes is used to assess how many uncertainty intervals cover the
measurand. The function takes four arguments: the measurand mu and three vectors
x, u and df containing the N estimates, standard uncertainties and degrees-of-freedom.
It returns an N -element Boolean vector that can be summed to yield the number of
successful uncertainty intervals (see §2.2).

#--------------------------------------

# OK[i] is TRUE if the 95% uncertainty

# interval [ x[i]-U[i], x[i]+U[i] ]

# contains ’mu’

#

sim.successes <-function(mu,x,u,df){

k <- qt(0.975,df)

U <- u * k

OK <- (x-U <= mu) & (x+U >= mu)

return(OK)

}

6 Appendix: Gauge block example

The code in this appendix was used to obtain the results presented in §3.1. The first
section defines a small number of constants and the measurand for the purposes of
testing. The constant zero is a vector of N zeros. A number of error terms are then
generated. These correspond to the quantities in equation (5) that will be estimated as
zero during data processing. Next, estimates of d are generated (d.bar.sim.x). The
simulation section of the code concludes with the generation of independent estimates
of ls, θ and αs (ls.sim, theta.bar.sim and alphas.s.sim, respectively).

#--------------------------------------

# Constants

#

ls.const <- 50.000623E-3

d.bar.const <- 215E-9

theta.bar.const <- -0.1

alpha.s.const <- 11.5E-6

zero <- rep.int(0,N)

l.measurand <- (ls.const + d.bar.const)

#--------------------------------------

# Simulation of errors

#

d0.sim <- sim.gaussian(N,0,5.8E-9,24)

d1.sim <- sim.gaussian(N,0,3.9E-9,5)

d2.sim <- sim.gaussian(N,0,6.7E-9,8)

delta.sim <- sim.arcsine(N,0,0.5,Inf)

d.alpha.sim <- sim.uniform(N,0,1E-6,50)

d.theta.sim <- sim.uniform(N,0,0.05,2)

#--------------------------------------

d.bar.sim.x <- (

l.measurand - ls.const

+ l.measurand * (

(alpha.s.const + d.alpha.sim$x)

* (theta.bar.const + delta.sim$x)



)

-ls.const * (

alpha.s.const * (

theta.bar.const +

delta.sim$x -

d.theta.sim$x

)

)

+ d0.sim$x + d1.sim$x + d2.sim$x

)

#--------------------------------------

# Simulation of other influences

#

ls.sim <- sim.gaussian(

N,ls.const,25E-9,18

)

theta.bar.sim <- sim.gaussian(

N,theta.bar.const,0.2,Inf

)

alpha.s.sim <- sim.uniform(

N,alpha.s.const,2E-6,Inf

)

The calculation of uncertainty follows. This code performs data processing on the
information generated in the simulation. The inputs to the GUM calculation are defined
as elementary uncertain numbers. The values of d are defined as a constant uncertain
numbers (d.bar), with no uncertainty. This allows the estimates of d to be defined as
an intermediate uncertain number with components of uncertainty associated with d0,
d1 and d2. An expression for l, l.expr (H.3 in the GUM), is then used to define an
intermediate uncertain number for the estimate of the measurand. Finally, the coverage
is reported as a percentage of N .

Note that some simulated quantities contribute to variability to the values of d (d.bar.sim.x),
but are not used in the uncertainty calculation. For example, the estimates of d0, d1

and d2 in the uncertainty calculation are always zero, because they represent unobserv-
able errors with a zero mean. On the other hand, some quantities are fixed during
the simulation of d. Estimates of these quantities are obtained separately for use in
the uncertainty calculation, by assuming that the underlying physical quantity is fixed
but that estimates (measurements) of the quantity are made for the purposes of data
processing.

#--------------------------------------

# GUM uncertainty calculation

# input definitions

#

ls <- elementary(

’ls’,

ls.sim$x,

ls.sim$u,

ls.sim$df

)

d0 <- elementary(

’d0’,

zero,

d0.sim$u,

d0.sim$df

)

d1 <- elementary(

’d1’,



zero,

d1.sim$u,

d1.sim$df

)

d2 <- elementary(

’d2’,

zero,

d2.sim$u,

d2.sim$df

)

theta.bar <- elementary(

’theta_bar’,

theta.bar.sim$x,

theta.bar.sim$u

)

delta <- elementary(

’delta’,

zero,

delta.sim$u

)

d.alpha <- elementary(

’d_alpha’,

zero,

d.alpha.sim$u,

d.alpha.sim$df

)

alpha.s <- elementary(

’alpha_s’,

alpha.s.sim$x,

alpha.s.sim$u

)

d.theta <- elementary(

’d_theta’,

zero,

d.theta.sim$u,

d.theta.sim$df

)

#--------------------------------------

# Simulated estimate of dbar

d.bar <- constant(’dbar’,d.bar.sim.x)

#--------------------------------------

# GUM uncertainty calculation

# intermediate results

#

d <- intermediate(

’d’,

~dbar-d0-d1-d2,

list(d0,d1,d2,d.bar)

)

theta <- intermediate(

’theta’,

~ theta_bar - delta,

list(theta.bar,delta)

)

#--------------------------------------

# GUM uncertainty calculation

# giving the final result

#

l.expr <- ~ ls + d - ls * (

d_alpha * theta +

alpha_s * d_theta

)

l <- intermediate(



’l’,

l.expr,

list(d,ls,d.alpha,theta,

alpha.s,d.theta)

)

cover <- 100 * sum(

sim.successes(

l.measurand,

value(l),

uncertainty(l),

dof(l)

)

) / N

The following was appended to include the two additional second-order terms in the
uncertainty calculation.

#--------------------------------------

# Nonlinear terms are added here as

# independent contributions

#

nl1.u <- ls.sim$x *

alpha.s.sim$u *

d.theta.sim$u

nl1 <- elementary(

’nl1’,

zero,

nl1.u,

d.theta.sim$df

)

nl2.u <- ls.sim$x *

d.alpha.sim$u *

uncertainty(theta)

nl2 <- elementary(

’nl2’,

rep(0,N),

nl2.u,

d.alpha.sim$df

)

nl <- intermediate(

’nl’,

~l + nl1 + nl2,

list(nl1,nl2,l)

)

cover <- 100 * sum(

sim.successes(

l.measurand,

value(nl),

uncertainty(nl),

dof(nl)

)

) / N

7 Appendix: Impedance measurement example

The code below was used to obtain the results presented in §3.2 for the impedance
measurement problem. The method of assessing coverage is shown for the resistance R
only, to save space. Three different methods were used to assign a number of degrees-
of-freedom to the final results, as described in §3.2. In the last section of code, different



lines can be uncommented to implement the different methods.

#--------------------------------------

# Simulation model parameters

#

V.val <- 4.999 # V

I.val <- 19.661E-3 # amp

Phi.val <- 1.04446 # radian

u1 <- 3.2E-3

u2 <- 9.5E-6

u3 <- 7.5E-4

r12 <- -0.36

r13 <- 0.86

r23 <- -0.65

df <- 4

#--------------------------------------

# The 3 measurands are in a vector

#

mu <- c(

V.val * cos(Phi.val) / I.val,

V.val * sin(Phi.val) / I.val,

V.val / I.val

)

#--------------------------------------

# Simulation model

#

x_exp <- c(V.val,I.val,Phi.val)

cv_exp <- matrix(

c(

u1^2,u1*r12*u2,u1*r13*u3,

u1*r12*u2,u2^2,u2*r23*u3,

u1*r13*u3,u2*r23*u3,u3^2

),

ncol=3

)

sim.data <- sim.mvgaussian(N,

x_exp,cv_exp,df

)

#--------------------------------------

# GUM calculation inputs

#

V.bar <- elementary(

’V_bar’,

sim.data$x[1,],

sqrt(sim.data$cv[1,1,])

)

I.bar <- elementary(

’I_bar’,

sim.data$x[2,],

sqrt(sim.data$cv[2,2,])

)

phi.bar <- elementary(

’phi_bar’,

sim.data$x[3,],

sqrt(sim.data$cv[3,3,])

)

set.correlation(



V.bar,

I.bar,

sim.data$cv[1,2,]/sqrt(

sim.data$cv[1,1,]*sim.data$cv[2,2,]

)

)

set.correlation(

V.bar,

phi.bar,

sim.data$cv[1,3,]/sqrt(

sim.data$cv[1,1,]*sim.data$cv[3,3,]

)

)

set.correlation(

I.bar,

phi.bar,

sim.data$cv[2,3,]/sqrt(

sim.data$cv[2,2,]*sim.data$cv[3,3,]

)

)

inputs <- list(V.bar,I.bar,phi.bar)

#--------------------------------------

# Final results

#

R <- intermediate(

’R’,

~ V_bar * cos(phi_bar) / I_bar,

inputs

)

X <- intermediate(

’X’,

~ V_bar * sin(phi_bar) / I_bar,

inputs

)

Z <- intermediate(

’Z’,

~ V_bar / I_bar,

inputs

)

#--------------------------------------

# Alternative coverage calculations

# df <- 4

# df <- Inf

# ignore.corr <- TRUE

# df <- dof(R,ignore.corr)

rate <- 100 * sum(

sim.successes(

mu[1],

value(R),

uncertainty(R,ignore.corr),

df

)

) / N


